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Abstract 

 
Nearly all of the studies of flow and transport in fractured rocks have assumed that each 

fracture can be modeled as an open space between two surfaces with constant or variable 

separation.  Field observations of rock fractures have shown that a fracture in the field 

can be rather more complex.  Recent studies indicate that a complex fracture can be 

characterized as a thin fracture zone having several interconnected sub-fractures, which 

can contain mechanically dislodged and chemically altered materials with an enhanced 

porosity.  The present paper proposes a particle-tracking approach to calculate solute 

transport in a complex fracture, with structures in the fracture thickness normal to the 

fracture plane.  These structures include sub-fractures, dead-end pores, gouge materials, 

small matrix blocks, and the adjacent rock matrix, all providing material in which solute 

diffusion and sorption can occur.  The method is described; an example is provided to 

show its feasibility and the reasonableness of its parameter dependence; and, finally, 

direction for its further development is discussed. 

 

Keywords: 5104 Fracture and flow, 5139 Transport properties, 1829 Groundwater 

hydrology 
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Introduction 

 
Flow and transport in a single fracture in low-permeability crystalline rocks has been 

widely studied over the past decade and more (Cvetkovic et al., 1999; Moreno et al., 

1990; Nordqvist et al., 1992; Tsang and Tsang, 1989; Brown et al., 1998; Moreno and 

Tsang, 1994; and others).  In nearly all of these studies, the single fracture is modeled as 

an open space between two surfaces with a constant or variable separation.  This 

separation or aperture is bounded by rock matrix, which plays a significant role in solute 

transport in the fracture through the process of matrix diffusion and sorption (Neretnieks, 

1980; Rasmuson and Neretnieks, 1986). 

 

Recent studies of rock fractures have shown that a natural fracture can be rather complex.  

Sharp et al. (1996) and Robinson et al. (1998) reviewed field observations on a fracture 

skin region where porosity and permeability can be quite different from those of the rock 

matrix.  Bossart and Mazurek’s investigation (1991) of the structural geology of a shear 

fracture showed that it can be considered as a thin fracture zone with a thickness of the 

order of one centimeter.  Within this fracture zone, water is carried in several 

interconnected sub-fractures containing mechanically dislodged and chemically altered 

materials of enhanced porosity.  These fractures are embedded in a fabric of granitic rock 

with large porosity within the fracture zone.  Hadermann and Heer (1996) modeled flow 

and transport through such a complex fracture by conceptualizing it as a set of three to six 

small, parallel, uniform-aperture fractures embedded in the thickness of the complex 

fracture or fracture zone.  Solutes moving through these sub-fractures experience 

diffusion and sorption into the rock materials within and outside the fracture zone. 

 

The present paper proposes a particle-tracking method for modeling flow and transport in 

a complex fracture, accounting for transmissivity variability over the fracture plane and 

the structure in its thickness normal to this plane.  Thus, the fracture thickness is 

characterized by the presence of several smaller sub-fractures containing gouge materials 

and surrounded by altered rock matrix, and bounded on either side by “semi-infinite” 
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rock matrix.  In the next section, a characterization of the complex fracture is given and 

its conceptualization discussed.  The tools to be used for flow and transport calculations 

in such a complex fracture are then presented, together with a procedure for carrying out 

the computation.  An example with calculational results is then given to illustrate the 

method.  Finally a discussion of further research directions concludes the paper. 

 

Definition of a Complex Fracture and its Conceptualization 
 

In this paper, we shall use “complex fracture” and “fracture zone” interchangeably and 

refer to “sub-fractures” as smaller fractures embedded within the fracture zone.  Mazurek 

et al. (2001) characterizes a fracture zone as having two embedded sub-fractures partially 

filled with gouge materials.  A schematic cross section of the complex fracture is shown 

in Figure 1.  On either side of each sub-fracture are fracture coatings and microfractures.  

The two sub-fractures are connected by a number of minor fractures called splays.  In the 

example shown in Figure 1, the two sub-fractures in the fracture zone are separated by ~2 

cm.  Considering flow through such a complex fracture, we can identify a number of 

factors that play a role.  These are listed in Table 1. 
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Table 1.  Factors affecting flow and transport in a complex fracture 

Factor Description 

a Spatial transmissivity variations over the plane of the fracture zone 

b Multiple sub-fractures within the fracture zone (two sub-fractures 

are shown in Figure 1) 

c Gouge materials within each of the sub-fractures 

d A skin zone on the two rock surfaces of a sub-fracture, with surface 

coating and microfractures 

e Splays, or minor fractures, in between the two sub-fractures; these 

break up the rock into blocks with sizes of a fraction of the width of 

the complex fracture 

f Dead-end pores and splays into neighboring rocks 

g Rock matrix on two sides of the fracture zone, which may be altered 

in the immediate neighborhood of the fracture zone with a higher 

porosity region 

 

Diffusion and sorption retard tracers moving through the sub-fractures, with the 

magnitude of retardation depending on the nature of the rock material present (i.e., 

gouge, fracture skin, altered rock matrix, or unaltered rock matrix).  With its large surface 

to volume ratio, the small blocks of gouge material provide an effective retardation 

mechanism, followed by intermediate-size blocks of altered rock interspersed by splays 

and dead-end pores, and finally the semi-infinite rock matrix on either side of the fracture 

zone.  Fracture skins may either enhance or inhibit diffusion and sorption, depending on 

their physical and chemical character.  As a function of time, particles move initially by 

advection through the system and soon are retarded by diffusion and sorption through the 

gouge and intermediate blocks.  Then, because of their finite sizes, these blocks become 

saturated by the particles and provide no further retardation and diffusive effect.  Thus, 

only the semi-infinite rock matrix, with a much smaller surface to volume ratio, allows 

diffusion/sorption to the particles in the longer term.     
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Now let us conceptualize the problem so that a calculational method can be designed.  

This conceptualization depends strongly on the available information or data on the 

complex fracture.  The proposed approach attempts to make use of all potentially 

available data.  In addition, those features without specific information are combined 

where possible into lumped parameters.  The values of these lumped parameters can then 

be obtained through calibration against tracer transport experiments. 

 

We propose first to calculate flow in the fracture plane (x, y) based on well-test data.  

These well tests are normally conducted with packers bracketing the thickness of the 

fracture zone and no detailed hydraulic resolution in the z direction can be expected.  In 

principle, we can obtain data on transmissivity variability over the fracture plane, T(x, y).  

Given transmissivity values at a reasonable number of (x, y) locations, we can construct a 

probability density function for a two-dimensional (2-D) logT distribution with a spatial 

correlation range λ.  If the logT distribution turns out to be normal, then it can be simply 

characterized by its mean log(T) and standard deviation σlogT.  Then, realizations of the 

transmissivity field can be generated using a geostatistical method, and the 2-D flow 

q(x, y) through each grid cell at (x, y) can be calculated numerically (see, for example, 

Moreno et al., 1991, Tsang and Tsang, 1989; Tsang and Neretnieks, 1998).  Given q(x, 

y), the conventional particle-tracking procedure is to calculate the residence time, t, in a 

grid block ∆x∆y within the 2-D flow field. The 2-D tracer travel time would then be the 

sum of these residence times as the tracer traverses the flow domain and emerges at the 

observation area.  Typically, t is calculated by assuming that the cubic law holds locally 

at each grid cell, relating q to an apparent aperture b, i.e. q ∝ b3.  In this case, a flow 

volume can be defined as V = b∆x∆y.  Thus, t = V/q ∝ ∆x∆y/b2. 

 

Now, for our problem, we need to modify the 2-D residence time t to account for the 

structures in the third dimension, normal to the fracture plane.  For this purpose, we shall 

assume that the 2-D flow q(x, y) represents the sum of the flows in the sub-fractures 

distributed over the thickness (z-direction) of the complex fracture, and that the flow 

direction of each sub-fracture is the same as that of q(x, y).  For the case of two sub-

fractures, derivations can then be made as follows. 
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We hypothesize that at each (x, y) location, the two sub-fractures have flow q1 going 

through one with aperture b1 and q2 going through the other with aperture b2.  We 

introduce the ratio of flow in the two sub-fractures, q2/q1 as a new parameter  

1

2

q
q

=α
.        (1) 

 

Therefore the total flow q in each grid cell at (x, y) may be written as 

 

)1(121 α+=+= qqqq .       (2) 

 

Here we have written q(x, y), q1(x, y), and q2(x, y) simply as q, q1, and q2, respectively.  

Thus, q1 and q2 in terms of q are given by: 

α+
=

11
qq

        (3) 
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The sub-volumes of a grid cell at the (x, y) location, corresponding to the large and small 

sub-fractures, respectively, are 

xybV ∆∆= 11         (5) 

 

xybV ∆∆= 22 .        (6) 

 

Assuming that the cubic law is applicable locally at a grid cell (x, y) in each sub-fracture, 

qi ∝ bi
3 (i = 1,2), we have from Equation (1) 
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To conserve flow, we require Equation (2) to hold, and since the cubic law is assumed, 
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This equation implies b ≠ b1 + b2, and, from Equations (3), (4) and (7), 
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which is the reason we refer to b from the 2-D calculation as the apparent b.  This is a 

typical situation for a fracture zone containing a number of small fractures, each obeying 

the cubic flow law, with the requirement that the total flow be kept constant.  Using V = 

b∆y∆x, it can be derived from Equations (5) through (8) that 
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Therefore, we get residence times for the two sub-fractures, respectively, of 
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These residence times are a function of the parameter α. 

 

For each particle, the probability of flow to be in the sub-fracture 1 is  
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and the probability of flow to be in the sub-fracture 2 is  
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As an aside, note that the weighted residence time can be shown to be 

 

t
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again illustrating the fact that V1+ V2 is not simply V, but is a function of α. 

 

A similar development can be made for three or more sub-fractures in the complex 

fracture with the introduction of additional parameters like α´.  If there are many sub-

fractures in the complex fracture, then q(x, y) can be divided into a probabilistic 

distribution of flow in the z direction: P [q(z)], such that at each (x, y), the flows at 

different z values add up to q(x, y).  This probabilistic function can be gaussian, bimodal, 

or multi-modal, and can be characterized by two or three more parameters.  The spatial 

flow distribution in the fracture plane q(x, y) and its extension into the third dimension 
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accounts for Factors a and b in the Table 1 list of factors characterizing the complex 

fracture. 

 

Next, the presence of gouge materials in the sub-fractures (Table 1, Factor c), minor 

fractures and splays forming in matrix blocks between the sub-fractures (Table 1, Factor 

e), and dead-end pores (Table 1, Factor f) are accounted for by assuming that water flow 

within these objects is negligible compared with flows in sub-fractures and that they act 

only as materials for diffusion and sorption.  Fortunately, for some field sites, direct 

measurements on sample materials are possible to provide the diffusivity and sorptive 

coefficient for solutes of interest.  The rock volume on either side of the fracture zone 

(Table 1, Factor g) is assumed similarly to act as a semi-infinite matrix medium for solute 

diffusion and sorption. 

 

We categorize the media into which diffusion and sorption occur into three types.  The 

first two correspond to “matrix blocks” with characteristic size 2rm:  (1) small blocks 

with 2rm ≈ 10─1000 µm representing fault gouge (Table 1, Factor c), and (2) 

intermediate-size blocks between the two sub-fractures with 2rm of the order of 1 mm─1 

cm, representing the effects of splays and minor fractures between the sub-fractures 

(Table 1, Factors e and f). The third type is a semi-infinite medium representing rock 

matrix on either side of the complex fracture (Table 1, Factor g).  Thus, at every step of 

the particle movement, we can assign it to encounter one of these three diffusion/sorption 

types with a prescribed probability.  The relative importance of advection and diffusion 

depends on fracture aperture, so either b1 or b2 is used in the diffusion/sorption 

calculation, depending on which sub-fracture was chosen for the particle.  At the present 

time, skin effects (Table 1, Factor d) are not included in our model. 

 

Approach to Modeling Transport in a Complex Fracture 
 

Our approach is based on the particle tracking method applied to the conceptual model 

described above, using three computer codes.  The first is a code to generate the T (x, y) 

heterogeneous field, using a probability density function for logT and spatial correlation 
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λ.  The logT probability function is estimated from available transmissivity data at a 

number of locations over the fracture plane, and the generated field is conditioned to 

these data.  In the example presented in the next section, we have used the SISIM code, 

which is part of the geostatistical library GSLIB by Deutsch and Journel (1998).  The 

code is based on sequential indicator geostatistics, which does not require the assumption 

of a particular distribution such as lognormal and which, furthermore, allows different 

spatial correlation ranges for different ranges of T values.  Tsang et al. (1996) used this 

code to generate 3D fracture-porous rock systems.  For our present application, only T (x, 

y) in 2D is generated with this code. 

 

The second tool is a code to calculate q(x, y) over this transmissivity field.  In our case, 

we use a simple finite difference code.  Once q(x, y) is obtained, it is divided into flows 

within sub-fractures in the z direction q(x, y; zi), as discussed in the last section, with a 

new parameter α for the case of two sub-fractures. Cases with more than two sub-

fractures or with a sub-fracture distribution can also be done straightforwardly.  

 

Once q(x, y; zi) is known, a particle tracking code is used to account for matrix diffusion 

into finite matrix blocks or into a semi-infinite medium.  The code we use for the 

example below is the THEMM code (Tsang and Tsang, 2001).  In this method, for each 

grid cell, the advective residence time of a particle is first computed.  Then, using a semi-

analytic method involving a probabilistic function, a time delay is calculated to account 

for diffusion and sorption into rock matrix blocks of a specified radius rm, that are 

encountered by the particle.  The new parameters required, besides the rock block size 

2rm, are matrix block porosity φm, linear-sorption isotherm KD, and solute diffusion 

coefficient De (an effective diffusion coefficient formed by the product of the solute 

diffusion coefficient in water, the porosity, and the tortuosity of the matrix block).  As 

discussed in the last section, rock matrix blocks of three types will be used, so that at 

each time step, the particles will have a prescribed probability of encountering these three 

types of rock materials.  Three corresponding sets of matrix diffusion and sorption 

parameters can be estimated from laboratory tests of samples or by calibration to tracer 

tests in the field. 
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Thus, within the THEMM code, at every step of particle tracking (x, y, z1, or z2), the 

particles encounter one of the three classes of matrix blocks with a prescribed probability.  

At each step, a time delay due to diffusion and sorption into these matrix types is 

calculated and added to the particle advective residence time.  Then, particle locations as 

a function of time are traced over the fracture zone plane, and breakthrough curves at the 

outlet or observation well are computed by summing over all arriving particles. 

 

The above calculational method is illustrated by an example presented in the next section. 

 

Example 
 
In this example, which takes advantage of the capability of the SISIM code, we assume 

that the probability density function representing a range of observed transmissivity data 

can be divided into six transmissivity groups (Table 2).  The correlation length for the 

group with the highest transmissivity is taken to be 1 m, and the correlation lengths for 

the other five groups are all taken to be 0.3 m.  These data are consistent with a data set 

from an actual field site at the Hard Rock Lab, Äspö, Sweden (Winberg et al., 2000).  

Figure 2 shows a transmissivity distribution generated with SISIM as well as stream lines 

illustrating the steady-state flow field obtained when a head difference is applied between 

the top and bottom of the model.  The two sides are no-flow boundaries. 
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Table 2.  Model Properties. 

Fracture Properties  

Transmissivity  

Geometric mean 3.5E-8 m2/s 

Minimum 7.1E-10 m2/s 

Maximum 1.1E-5 m2/s 

SISIM code parameters  

Transmissivity group 1 2 3 4 5 6 

Weighting 0.27 0.13 0.20 0.20 0 0.20 

log10T level  -8.8 -8.2 -7.2 -6.4 -5.4 -5.0 

Spatial correlation 

lengths 

0.3 m 0.3 m 0.3 m 0.3 m 0.3 m 1 m 

Fracture zone thickness 2 cm 

Matrix Properties Small blocks Intermediate blocks Semi-infinite 

Probability (%) 20 30 50 

2rm 0.1 cm 1 cm - 

φm 0.2 0.01 0.003 

De 2.E-10 m2/s 1.E-12 m2/s 8.4E-14 m2/s 

 

We assume that there are two sub-fractures within the fracture zone thickness, and 

consider the α values to range from 0 to 1.  Typical properties (rm, φm, De) for the three 

types of rock matrix are listed in Table 2.  In our simulation, we let a non-sorbing tracer 

be released along a 2-m horizontal line perpendicular to the overall flow direction, 5 m 

from the up-gradient boundary of the model (6.5 < x < 8.5, y = 5 in Figure 2).  Tracer is 

collected all along the down-gradient boundary of the model (y = 15 m), to produce one 

aggregate breakthrough curve.   
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Figure 3 summarizes the results of transport in a complex fracture.  The calculated 

breakthrough curves of tracer concentration are shown as a function of time for cases 

with diffusion into the three types of matrix blocks, with probability ratios of 0.2, 0.3, and 

0.5 for the gouge, intermediate blocks and semi-infinite matrix, respectively.  The sets of 

curves shown may be discussed in terms of two separate groups.  The first group contains 

curves shown by lines with square symbols, labeled “single type, α = 0”.  They show the 

influence of individual contributions of diffusion-retardation caused by gouge, 

intermediate blocks, and semi-infinite matrix, respectively, by turning off the effect of the 

other two contributions.  As compared with the advection-only curve (the broken line), 

diffusion into intermediate and gouge materials is shown as a shift of the curve to later 

times and saturation of tracers in finite rock volumes is indicated by the fact that the 

shape of the curves are similar to that of the advection-only case.  The semi-infinite 

curves, on the other hand, show a small impact initially resulting from the low surface-to-

volume ratio for diffusion, but then its effect persists to very large times.  The solid 

curve, labeled with “0” (meaning α = 0), reflects the sum of the three effects. 

 

The second group of curves in Figure 3 shows solid curves without symbols, which are 

labeled 0, 0.1, 0.3, and 1.  These are cases with diffusion into all matrix types, with 

α = 0, 0.1, 0.3 and 1, respectively.  When α = 0, there is only flow through one sub-

fracture; increasing values of α indicate increasing quantities of flow through the second 

sub-fracture, until when α = 1, the two sub-fractures have identical flow properties.  Pore 

volume (V1 + V2) = (b1 + b2)∆x∆y increases as α increases (Equation 11), so 

breakthrough time is delayed as α increases (Equation 18).  For 0 < α < 1, the 

breakthrough curves show a long tail of late-arriving tracer that has spent a significant 

period of time in the smaller sub-fracture, with greater opportunity for matrix diffusion. 

 

Our main results are obtained for one realization of the 2D heterogeneous logT field 

generated by the SISIM code.  To evaluate the effect of multiple realizations, we 

generated four more realizations based on the same statistical parameters (Table 2) and 

re-calculated the breakthrough curves for two cases, that of gouge-only and that of 

α = 0.1.  The spread of the results for the five realizations is indicated by the horizontal 
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bars shown on these two curves.  The small spread shows that in our example the impact 

of multiple realizations is limited. 
 

Discussions and Concluding Remarks 

 

An approach has been proposed and described to calculate solute transport in a complex 

fracture with structures in the fracture thickness normal to the fracture plane.  These 

structures include sub-fractures, dead-end pores, gouge materials, intermediate matrix 

blocks, and the adjacent rock matrix medium, all of which provide means for solute 

diffusion and sorption.  An example is provided to demonstrate the approach, and results 

show that the proposed method is feasible, and the parameter dependence and sensitivity 

are reasonable. 

 

The present approach includes sufficient physics to account for the structure of the 

complex fracture, considering that its detailed geometry and properties are not available 

in field situations.  Generally, we should introduce a minimum number of new 

parameters that are needed to reproduce all field data.  If we assume that there are two 

sub-fractures in a ladder-like structure (see Figure 1), we need to introduce one additional 

parameter α to represent the relative flows through the two sub-fractures.  Further, we 

assume the probabilities for the tracer to encounter the three types of matrix materials that 

participate in diffusion and adsorption.  The diffusion and sorption properties can, in 

principle, be obtained by laboratory measurements for, respectively, the fracture gouge 

materials, rock materials between the two sub-fractures, and the rock matrix neighboring 

the complex fracture.  The parameter α, however, can best be estimated through a 

calibration study against a set of tracer transport test data.  Similarly, if we had 

introduced three sub-fractures, then we would have two parameters describing their 

relative flows, α and α', and these would need to be estimated by calibration against 

several sets of tracer test data. 

 

In general, the parameter α may vary over space, and thus its value obtained through 

calibration must be considered as a representative value averaged in some sense over the 
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fracture plane.  It is still an open issue, if the tracer migration distances in the calibration 

and in later prediction studies are very different, whether this average α value is still valid 

for the latter.  In fact, this is part of the general problem of extrapolation of what we learn 

from short-term tracer tests to predictions of tracer transport over larger time and space 

scales. 

 

One interesting question is what happens to the calibrated parameter values if we were to 

use a simple fracture model, based on the conventional advective-dispersive equation, to 

match the tracer breakthrough curves obtained from results for a complex fracture.  In the 

simple fracture model, diffusion and sorption into gouge materials and intermediate 

blocks are ignored, and thus their effects have to be represented by the property values of 

the semi-infinite rock matrix.  This would lead to calibrated values significantly larger 

than laboratory measurements of the rock matrix samples. 

 

One of the features of a complex fracture, the fracture skin between flow in the fracture 

aperture and the adjacent rock matrix, has not been included in the present approach.  

This requires a method to calculate solute migration through several media successively, 

which is currently under study and development.  Another related problem is the impact 

of the conceptual model proposed in this paper on flow and pressure distributions both in 

the fracture plane and in the third dimension normal to it.  This deserves further study. 
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Figure 1.  Structure of a complex fracture or master fault (adapted from Mazurek et al., 
2001). 
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Figure 2.  Generated Log transmissivity distribution (T in m2/s), based on six 
transmissivity groups, the highest of which has a longer correlation length.  Stream lines 
are shown to illustrate the steady-state flow field obtained by imposing a pressure 
difference between the upper and lower boundaries. 
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Figure 3.  Calculated breakthrough curves for different types of matrix diffusion and also 
for different α values.  All cases assume probabilities of 20% small blocks, 30% 
intermediate blocks, and 50% semi-infinite matrix for tracer diffusion at every step.  For 
the “advection-only” curve, diffusion for all matrix types is turned off.  For the “single 
type” curves, matrix diffusion is turned off for all but the one contribution.  For the “all 
types” curves, matrix diffusion is on for all matrix types.  The short horizontal bars on the 
“gouge” curve and the “α = 0.1” curve illustrate the spread obtained for five different 
stochastic realizations of the transmissivity distribution over the fracture plane.   
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